
; LO G I N : O c to b e r 20 0 9	 con fe re n ce re p o rt s	 107

in time, so that wedged operations can be detected and
addressed. “Realized execution paths” provide a statistical
depiction of time spent in each processor state, while data
flow depictions show how map and reduce functions relate
to one another.

A Common Substrate for Cluster Computing■■

Benjamin Hindman, Andy Konwinski, Matei Zaharia, and Ion
Stoica, University of California, Berkeley

NEXUS is a common substrate level that allows several
cloud frameworks with differing semantics to co-locate in
the same cloud. It can also be used to run several versions
of the same framework in one cloud. NEXUS is extremely
lightweight and attempts to be a “microkernel” for serv-
ing cloud stacks. Performance experiments for a logistic
regression machine-learning algorithm show that running
Hadoop on top of NEXUS is negligibly slower than run-
ning Hadoop alone, but that running the same application
on NEXUS alone is several times faster. Since microkernels
were not successful, an audience member wondered, why
do the authors expect NEXUS to be successful? By the time
microkernels were introduced, there were a number of well-
established players in the operating systems space, but the
cloud is still young and can be changed.

Using Proxies to Accelerate Cloud Applications■■

Jon Weissman and Siddharth Ramakrishnan, University of
Minnesota, Twin Cities

A proxy can be utilized to speed up access to cloud services
by having superior location or access to relevant resources.
In a PlanetLab experiment, proxies were utilized to access
30 commercial Web services. Response times for 70% of
queries were improved by proxying, with a 20% perfor-
mance improvement on average among these. Proxies excel
when a cloud application accesses multiple others, which
can happen due to specialization of computing infrastruc-
ture or data store, distributed data mining, and mash-ups,
among others. Open questions include whether to proxy
and why, where to optimally locate proxies, and how to
select a proxy from those available. The ability of a proxy to
cache results or perform local computations has not been
explored.

Short Papers
DryadInc: Reusing Work in Large-scale Computations■■

Lucian Popa, University of California, Berkeley; Mihai Budiu,
Yuan Yu, and Michael Isard, Microsoft Research, Silicon Valley

A Dryad job is a directed acyclic graph representing data
flow in a distributed computation, where each vertex is a
computation and each edge represents data flow. A Dryad
job or set of jobs often involves redundant calculation of
the same result several times. “Identical computation” (IDE)
caches and reuses results of repeated computations, while
“incremental merging” (MER) employs a user-crafted com-
putation that incorporates new data into the results of a pre-
vious computation. The cost-effectiveness of IDE and MER

depends on a time/space tradeoff and whether computation
time or cache space is more expensive in context.

Towards Optimizing Hadoop Provisioning in the Cloud■■

Karthik Kambatla and Abhinav Pathak, Purdue University;
Himabindu Pucha, IBM Research Almaden

Hadoop has hundreds of configurable parameters. Current
tools like Hadoop on demand and Cloudera are laborious
to use when parameter tuning. One alternative is controlled
experimentation. Trying a distributed grep with 1, 4, 8, 16,
and 24 map nodes shows diminishing returns after use of 8
map nodes. Thus one can determine an appropriate number
of map nodes by direct experimentation. Someone ques-
tioned the value of such a method given that such experi-
ments would have to be done “at scale” and expensively in
order to guarantee sufficient accuracy.

BSDCan 2009: The Technical BSD Conference
Ottawa, Canada
May 6–9, 2009

Summarized by Royce Williams (royce@tycho.org)

Slides for most of the presentations are available at http://
bsdcan.org/2009/.

keynote address

Thinking about Thinking in Code■■

George V. Neville-Neil, Neville-Neil Consulting

In what he described as “a bit of a rant,” George Neville-Neil
challenged the BSD development community to think about
their work in a different way.

Neville-Neil started by attacking the idea that software de-
velopment is significantly more creative than, for example,
automobile manufacturing. He pointed out that there has
been little true innovation in graphical user interface de-
sign, showing similarities in GUIs ranging from the Xerox
PARC user interface through Mac OS X. He discarded tradi-
tional explanations such as blaming marketing or that users
demand front-end consistency. Even OS internals, he ar-
gued, have not substantially changed and do not fundamen-
tally differ among the major families of operating systems.
He stated that the languages that we work with truly dictate
our work, that features of bad languages (sloppy, unsafe,
confusing) lead to code that follows suit, and that making
programming languages easier has effectively lowered the
quality of code (by lowering the barrier to entry).

In a flurry of frank advice to programmers, Neville-Neil
went on to encourage reading good code, working with
good programmers (rather than poor ones, which he argues
can actually cause your own code to suffer), and refrain-
ing from repeatedly reinventing the wheel by recreating
low-level constructs (like lists, hashes, and other academic
projects). Instead, he suggested reading research papers
discriminatingly, exploring unfamiliar code and languages,

108	 ; LO G I N : VO L . 3 4 , N O. 5

avoiding too much specialization, and cultivating a willing-
ness to “break things, look stupid, be wrong, learn from
others.” He warned against hubris, not starting projects,
or never finishing them. He pointed out that we all have a
finite amount of time to live, so finding people who will tell
you when your idea is bad so that you can quickly move on
to the next one is very important. In closing, he suggested
seeking to reduce complexity, using visualization tools and
new data organization methods, and working with safe yet
powerful programming languages.

Automating FreeBSD Installations: PXE Booting and ■■

install.cfg Demystified
Randi Harper, IronPort/Cisco

Randi Harper reviewed some of the common issues with
customizing FreeBSD’s sysinstall configuration (the install
.cfg file) and installing FreeBSD over PXE. A basic walk-
through followed, noting common stumbling blocks along
the way (e.g., that trailing whitespace in the install.cfg file
can cause problems, and that some variables are case-sen-
sitive). Since install.cfg is not well documented, reading the
source was necessary.

Harper covered the entire sysinstall/PXE installation pro
cess. Steps included setting up the ISC dhcpd package; con-
figuring supporting services (tftp via inetd, NFS); copying
the contents of a FreeBSD installation CD to a staging area;
and using mdconfig to mount the included mfsroot image
in order to customize the install.cfg file within. Customi-
zation options included running in full automatic/unat-
tended mode, specifying a single NIC to use, and optionally
specifying packages to add post-install. The current system
requires that the NIC type used for installation be known in
advance, making it necessary to customize the install.cfg for
different hardware families. Harper is working on adding
support for a list of multiple NICs, tried in succession, to
reduce the number of separate configuration profiles.

During the question period, the topic of how to avoid
building the same system twice was raised. Matt Olander of
ixSystems asked about the feasibility of knowing the MAC
addresses of each system in advance. Harper replied that
such asset management is usually already part of large-scale
deployments. Olander noted that his environment consists
of setting up large groups of systems and then shipping
them to the end customer as quickly as possible, making
such inventory work infeasible. Discussion followed about
keeping a custom text file to incorporate into the dhcpd.
conf file to track “state” (the MACs of successfully built
systems).

GEOM_SCHED: A Framework for Disk Scheduling within ■■

GEOM
Luigi Rizzo and Fabio Checconi, University of Pisa

Luigi Rizzo presented GEOM_SCHED, a disk-scheduling
framework built on GEOM, the FreeBSD storage abstrac-
tion layer. FreeBSD now uses a primitive elevator/C-LOOK-
based scheduler. While there has been previous work on

disk scheduling in FreeBSD, it has not been committed to
the base OS. Rizzo speculated that this might be due to the
previous implementations being device-specific and that
disk schedulers based on the GEOM framework could make
development easier.

In turn, Rizzo examined the merits of each potential loca-
tion to place a disk scheduler (the disk device, the device
driver, and GEOM). He concluded that GEOM is a good
option, because it does not require hardware awareness or
driver modification, provides a single point of control, and
provides for transparent insertion and removal, as well as
runtime reconfiguration.

Another design goal was minimal kernel reconfiguration.
Since GEOM_SCHED is not included in the base FreeBSD
system, the existing implementation dynamically patches
g_io_request() to repurpose some unused fields in the
structure. It is otherwise implemented entirely outside of
the GENERIC kernel as a userland object, a generic kernel
module, and one or more kernel modules.

Rizzo went on to cover the GEOM_SCHED API, basic disk-
scheduling concepts, and his measurement methodology,
especially noting the hazards of measuring disk I/O perfor-
mance when the caching and read-ahead policies used by
drivers and firmware are sometimes not known.

Rizzo’s example scheduler was a straightforward implemen-
tation of round-robin queues, with anticipation (in which
seeks are delayed in case non-seek activity arrives soon
after, and then grouped). He presented the results of his
testing for various workloads. Even with the slight overhead
caused by GEOM, disk performance for multiple greedy
readers was significantly improved. He encouraged others to
start from this basic framework, applying other algorithms
for other workloads. His prototype is available at http://
info.iet.unipi.it/~luigi/FreeBSD/.

Robert Watson asked about the interaction between disk
scheduling and process prioritization, referencing previous
work that showed that particular I/O patterns (such as an
fsck) can suffer in surprising ways when interacting with
process scheduling. Rizzo encouraged further research in
this area.

Getting Started in Free and Open Source■■

Cat Allman and Leslie Hawthorn, Google

Cat Allman and Leslie Hawthorn took turns presenting
ideas in a tag-team fashion. Since there were many in the
audience who were decidedly not new to open source, they
partially adjusted their talk to address how current mem-
bers of open source projects can better understand and at-
tract new contributors.

High points included coming as close as possible to “going
back to being new” (by vicariously mentoring newcomers);
recognizing that thorny problem areas (like bug wrangling)
can be opportunities for ways to participate; understand-
ing that FOSS projects are inherently reputation-based
economies; designating a “newbie wrangler” (either some-

; LO G I N : O c to b e r 20 0 9	 con fe re n ce re p o rt s	 109

one talented in this area or as a rotating responsibility) to
protect people from burning out on hand-holding; creating
a culture tolerant of failure and mistakes to aid growth; and
not assuming that newcomers who make mistakes early will
remain permanently clueless.

Updates to the the FreeBSD Problem Reporting System■■

Mark Linimon, Lonesome Dove Computing Services

Mark Linimon, primary “bugmeister” for FreeBSD, pro-
posed an initial conceptual prototype to start work toward a
new system of problem reporting (PR) for FreeBSD, work-
ing under a grant from the FreeBSD Foundation. In broad
terms, lessons learned from the current system will be ap-
plied to a temporary prototype to model this new workflow.

Linimon has discovered some specific areas for improve-
ment. Some PR states (e.g., “patched” and “closed”) are
used consistently, while others (“feedback,” “analyzed”) are
overloaded, which has been confusing enough to throttle
PR throughput rates already hampered by resource limita-
tions. Linimon reviewed the workflow categories used by
similar frameworks (Bugzilla, Jira, and Trac) and, based
on that review, has created distinct stages in the model for
triage, submitter coordination, and development work, each
of which can be worked by different people with different
levels of skill.

As presented, there are other opportunities for improve-
ment. Notifications are too broad, and none of the alter-
native systems allow developers to limit notifications to
specific subsystems of interest or specialty. Current category
names were chosen with developers in mind (and can be
misunderstood by submitters). Linimon also identified a
family of PRs that do not fit easily into the current system,
including booting, installation, and performance issues, and
proposed a “Usability” category to group them conceptually.

An emerging property of the recent system was that add-
ing tagging support resulted in people using the relevant
subsystem man pages as tags. Linimon has added a specific
separate field in the prototype that is being populated using
the man page names.

Linimon has chosen Jira as the prototype platform (but
was careful to note that this does not mean that Jira will be
selected). He will be applying these ideas to Jira and seeking
feedback. People interested in helping were directed to the
FreeBSD wiki’s BugBusting page to coordinate.

scrypt: A New Key Derivation Function■■

Colin Percival, Tarsnap

To provide some background, Percival started with an
overview of encryption key derivation functions. KDFs are
commonly used to hash passwords for secure storage and to
generate cryptographic keys. Examples include the classic
DES CRYPT, Poul-Henning Kamp’s iterated MD5 CRYPT,
PBKDF2, and bcrypt.

These (and most other) preceding KDFs have focused on
raising the cost of “dollar-hours” by maximizing the amount

of CPU time required to run. However, well-funded groups
can afford farms of custom dedicated ASICs, each with
thousands of cores optimized for specific cryptographic
operations.

Percival’s tagline for this presentation was “Doing our best
to thwart TLAs with ASICs.” Percival noted that the cost
of an ASIC is roughly matched with its size and that large
amounts of RAM can take up a significant amount of ASIC
space. He reasoned that functions which both require very
large amounts of RAM (“memory-hard” functions) and are
not easily broken down to run in parallel (“sequential”
functions) would increase the required size (and number)
of dedicated ASICs, thereby significantly increasing the cor-
responding cost.

To enable such functions, Percival introduced a provably se-
quential memory-hard problem, ROMix, which fills a hash
table with pseudo-random values and then accesses them in
a pseudo-random order. In the accompanying paper Percival
proves that any algorithm that correctly implements ROMix
will be sequential memory-hard, but in the talk he left a
review of the two-page proof as an exercise for interested
listeners.

Percival then presented scrypt itself, which is a combina-
tion of PBKDF2, an algorithm that solves a given ROMix
problem, HMAC-SHA256, and Daniel J. Bernstein’s Salsa20
cipher to carry out the key derivation while also quickly
requiring large amounts of RAM. Like other KDFs, scrypt
takes parameters that can be used to adjust its costs to run,
so the maximum amount of RAM and maximum time in
seconds can be varied.

In order to illustrate the difference in strength, Percival es-
timated some real-world costs. Since entities in the business
of brute-force attacks do not publish hardware costs, Per-
cival also presented the assumptions he used for comparing
algorithms. He noted that, even if off by orders of magni-
tude, these estimates nevertheless held constant among the
functions and therefore are useful for relative comparisons.

Using the provided numbers and stating the parameters
used (for the functions that take them), Percival compared
DES CRYPT, MD5 (as a reference point, not useful for actual
encryption purposes), MD5 CRYPT, PBKDF2, bcrypt, and
scrypt. For example, an 8-character password with good
entropy, encrypted with scrypt in .1 seconds (good enough
for authentication speeds), will take roughly $4.8M to crack
within one year, while bcrypt would cost only $130K. For
longer times suitable for encrypting data (around 5 sec-
onds), the 8-character costs jump to $4.3M for bcrypt (3.0s)
and $19B for scrypt (3.8s).

While doing research for this work, Percival discovered that
OpenSSL uses simple MD5 hashing as its key derivation
function, and OpenSSH also uses simple MD5 for keyfile
passphrases. This may be of some concern for people who
carry their SSH keys on pocket USB devices.

110	 ; LO G I N : VO L . 3 4 , N O. 5

During the question period, Brooks Davis asked about the
feasibility of imposing a large per-transaction memory cost
on systems used for high-volume authentication or which
are subject to authentication floods. Percival replied that
the function takes a number of parameters to adjust the
CPU and memory cost of each calculation to fit the target
platform and work load.

Percival’s paper describing scrypt in more detail (including
proofs), the full estimate comparison, and a cross-platform
BSD-licensed implementation of scrypt are all available at
tarsnap.com/scrypt/.

Works in Progress Session (also known as the “lightning ■■

round”)
Chaired by Robert Watson

Colin Percival announced that he is interested in reviving
the project to build concurrency-awareness into the Free
BSD rc.d system. Now that multicore systems are the norm,
startup times could be significantly improved. Interested
contributors are encouraged to contact Colin.

Scott Ullrich of the pfSense Project outlined features of the
BSD Installer, a proposed unified installer for all BSDs, and
the installer used by Dragonfly BSD and the upcoming ver-
sion of pfSense. Features include a clear separation between
the front end and back end, enabling multiple possible front
ends. Recent work is focusing on adding the remaining
functionality included in FreeBSD’s sysinstall and the PC-
BSD installer, but missing from the BSD installer.

Philip Mullis briefly mentioned a new effort to create an
independent VoIP peering exchange. More information will
eventually be available at nopstn.net.

Zach Loafman of Isilon described kernel fault injection, a
new set of APIs used to insert specific user-controlled er-
rors at particular points in FreeBSD code (“failpoints”). The
APIs include the ability to assign the errors’ probabilities of
occurring or a cap on how many times they occur. Isilon

is using hundreds of these “failpoints” in production, and
Loafman is working to get support for them committed to
FreeBSD.

John Baldwin first gave a status report about the upcoming
FreeBSD 8.0. New features include virtual network stacks,
MIPS support, NFSv4, ECMP (which enables support for
kernel awareness of multiple routing tables and default
routes), virtual wireless access points, a reworked USB
stack, support for 32-bit FreeBSD 8 as a Xen dom-U guest,
and improved Linux binary compatibility. FreeBSD 8.0 is
scheduled for release at the end of August.

Baldwin also talked briefly about extensions to device
mmap() support, largely driven by the memory-mapping
needs of modern GPUs. In the amd64 and i386 ports, this
will be implemented via PAT (Page Attribute Table, required
for good PCI-Express performance) and will pave the way
for an Nvidia amd64 driver for FreeBSD.

John Birrell of Juniper Networks described jbuild, a new
FreeBSD build system that eliminates multiple layers of
redundant dependency calculation, significantly reduc-
ing build times. This is accomplished by front-loading the
master jbuild process with all dependency information from
the build directory.

Doug Rabson presented updates about FreeBSD on Xen. The
included XEN and XENHVM kernel configs in FreeBSD-
current are the best place to start experimenting with para-
virtualization and hardware virtualization, respectively.

Rabson also gave a quick how-to about booting from ZFS
and mapped out his planned future ZFS work, including
teaching the FreeBSD installer about ZFS.

Warner Losh talked about recent progress with the various
flavors of the MIPS port, working on the RMI XLR/XLS,
RMI Alchemy, Cavium Octeon1, and Atheros AR71xx/91xx
chips, using reference boards supplied by various sources.

